Specific Recognition of p53 Tetramers by Peptides Derived from p53 Interacting Proteins
نویسندگان
چکیده
Oligomerization plays a major role in regulating the activity of many proteins, and in modulating their interactions. p53 is a homotetrameric transcription factor that has a pivotal role in tumor suppression. Its tetramerization domain is contained within its C-terminal domain, which is a site for numerous protein-protein interactions. Those can either depend on or regulate p53 oligomerization. Here we screened an array of peptides derived from proteins known to bind the tetrameric p53 C-terminal domain (p53CTD) and identified ten binding peptides. We quantitatively characterized their binding to p53CTD using fluorescence anisotropy. The peptides bound tetrameric p53CTD with micromolar affinities. Despite the high charge of the binding peptides, electrostatics contributed only mildly to the interactions. NMR studies indicated that the peptides bound p53CTD at defined sites. The most significant chemical shift deviations were observed for the peptides WS100B(81-92), which bound directly to the p53 tetramerization domain, and PKCα(281-295), which stabilized p53CTD in circular dichroism thermal denaturation studies. Using analytical ultracentrifugation, we found that several of the peptides bound preferentially to p53 tetramers. Our results indicate that the protein-protein interactions of p53 are dependent on the oligomerization state of p53. We conclude that peptides may be used to regulate the oligomerization of p53.
منابع مشابه
14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers
Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-term...
متن کاملProduction and Evaluation of Polyclonal Rabbit Anti-Human p53 Antibody Using Bacterially Expressed Glutathione S-transferase-p53 fusion protein
p53 is a key tumor suppressor gene that is targeted for inactivation during human tumorigenesis. In this study, we produced and characterized polyclonal antihuman p53 antibody. The cDNA encoding the completehuman p53 protein was cloned into pGEX-4T-1 and expressed in Escherichia coli as a fusion protein with Schistosoma japonicum glutathione S-transferase (GST). The rabbits were immunized...
متن کاملEffect of human papillomavirus-16 infection on CD8+ T-cell recognition of a wild-type sequence p53264-272 peptide in patients with squamous cell carcinoma of the head and neck.
PURPOSE Wild-type sequence (wt) p53 peptides are attractive candidates for broadly applicable cancer vaccines, currently considered primarily for patients whose tumors overexpress p53. Circumstances exist, however, where increased p53 degradation may result in appreciable presentation of p53-derived peptides, despite low p53 expression. Squamous cell carcinoma of the head and neck is associated...
متن کاملCrystal structure of a multidomain human p53 tetramer bound to the natural CDKN1A (p21) p53-response element.
The p53 tumor suppressor protein is a sequence-specific DNA-binding transcription factor. Structures of p53 bound to DNA have been described, but, so far, no structure has been determined of p53 bound to a natural p53-response element. We describe here the structure of a human p53 homotetramer encompassing both the DNA-binding and homo-oligomerization domains in complex with the natural p53-res...
متن کاملCell Cycle, Cell Death, and Senescence Crystal Structure of a Multidomain Human p53 Tetramer Bound to the Natural CDKN1A (p21) p53-Response Element
The p53 tumor suppressor protein is a sequence-specific DNA-binding transcription factor. Structures of p53 bound to DNA have been described, but, so far, no structure has been determined of p53 bound to a natural p53-response element. We describe here the structure of a human p53 homotetramer encompassing both the DNA-binding and homo-oligomerization domains in complex with the natural p53-res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012